Adversarial Trainning¶
In this example, we show how to use OpenAttack to conduct adversarial training to improve the robustness of a victim model.
Adversarial training refers to adding adversarial examples, which are generated by attacking instances in the training set, to original training data set and retraining the victim model with the augmented data.
Generate Adversarial Examples with OpenAttack¶
OpenAttack provides a handy API which can easily generate adversarial examples,
namely attack_eval.ieval()
.
Next we show how to use this API to generate adversarial examples in detail.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 | # Launch adversarial attacks and generate adversarial examples
def attack(classifier, dataset, attacker = OpenAttack.attackers.PWWSAttacker()):
attack_eval = OpenAttack.AttackEval(
attacker,
classifier,
)
correct_samples = [
inst for inst in dataset if classifier.get_pred( [inst["x"]] )[0] == inst["y"]
]
accuracy = len(correct_samples) / len(dataset)
adversarial_samples = {
"x": [],
"y": [],
"tokens": []
}
for result in tqdm.tqdm(attack_eval.ieval(correct_samples), total=len(correct_samples)):
if result["success"]:
adversarial_samples["x"].append(result["result"])
adversarial_samples["y"].append(result["data"]["y"])
adversarial_samples["tokens"].append(tokenizer.tokenize(result["result"], pos_tagging=False))
attack_success_rate = len(adversarial_samples["x"]) / len(correct_samples)
print("Accuracy: %lf%%\nAttack success rate: %lf%%" % (accuracy * 100, attack_success_rate * 100))
return datasets.Dataset.from_dict(adversarial_samples)
|
Complete Code¶
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 | import OpenAttack
import torch
import datasets
import tqdm
from OpenAttack.text_process.tokenizer import PunctTokenizer
tokenizer = PunctTokenizer()
class MyClassifier(OpenAttack.Classifier):
def __init__(self, model, vocab) -> None:
self.model = model
self.vocab = vocab
def get_prob(self, sentences):
with torch.no_grad():
token_ids = make_batch_tokens([
tokenizer.tokenize(sent, pos_tagging=False) for sent in sentences
], self.vocab)
token_ids = torch.LongTensor(token_ids)
return self.model(token_ids).cpu().numpy()
def get_pred(self, sentences):
return self.get_prob(sentences).argmax(axis=1)
# Design a feedforward neural network as the the victim sentiment analysis model
def make_model(vocab_size):
"""
see `tutorial - pytorch <https://pytorch.org/tutorials/beginner/text_sentiment_ngrams_tutorial.html#define-the-model>`__
"""
import torch.nn as nn
class TextSentiment(nn.Module):
def __init__(self, vocab_size, embed_dim=32, num_class=2):
super().__init__()
self.embedding = nn.EmbeddingBag(vocab_size, embed_dim)
self.fc = nn.Linear(embed_dim, num_class)
self.softmax = nn.Softmax(dim=1)
self.init_weights()
def init_weights(self):
initrange = 0.5
self.embedding.weight.data.uniform_(-initrange, initrange)
self.fc.weight.data.uniform_(-initrange, initrange)
self.fc.bias.data.zero_()
def forward(self, text):
embedded = self.embedding(text, None)
return self.softmax(self.fc(embedded))
return TextSentiment(vocab_size)
def dataset_mapping(x):
return {
"x": x["sentence"],
"y": 1 if x["label"] > 0.5 else 0,
"tokens": tokenizer.tokenize(x["sentence"], pos_tagging=False)
}
# Choose SST-2 as the dataset
def prepare_data():
vocab = {
"<UNK>": 0,
"<PAD>": 1
}
dataset = datasets.load_dataset("sst").map(function=dataset_mapping).remove_columns(["label", "sentence", "tree"])
for dataset_name in ["train", "validation", "test"]:
for inst in dataset[dataset_name]:
for token in inst["tokens"]:
if token not in vocab:
vocab[token] = len(vocab)
return dataset["train"], dataset["validation"], dataset["test"], vocab
def make_batch_tokens(tokens_list, vocab):
batch_x = [
[
vocab[token] if token in vocab else vocab["<UNK>"]
for token in tokens
] for tokens in tokens_list
]
max_len = max( [len(tokens) for tokens in tokens_list] )
batch_x = [
sentence + [vocab["<PAD>"]] * (max_len - len(sentence))
for sentence in batch_x
]
return batch_x
# Batch data
def make_batch(data, vocab):
batch_x = make_batch_tokens(data["tokens"], vocab)
batch_y = data["y"]
return torch.LongTensor(batch_x), torch.LongTensor(batch_y)
# Train the victim model for one epoch
def train_epoch(model, dataset, vocab, batch_size=128, learning_rate=5e-3):
dataset = dataset.shuffle()
model.train()
criterion = torch.nn.NLLLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
avg_loss = 0
for start in range(0, len(dataset), batch_size):
train_x, train_y = make_batch(dataset[start: start + batch_size], vocab)
pred = model(train_x)
loss = criterion(pred.log(), train_y)
optimizer.zero_grad()
loss.backward()
optimizer.step()
avg_loss += loss.item()
return avg_loss / len(dataset)
def eval_classifier_acc(dataset, victim):
correct = 0
for inst in dataset:
correct += (victim.get_pred( [inst["x"]] )[0] == inst["y"])
return correct / len(dataset)
# Train the victim model and conduct evaluation
def train_model(model, data_train, data_valid, vocab, num_epoch=10):
mx_acc = None
mx_model = None
for i in range(num_epoch):
loss = train_epoch(model, data_train, vocab)
victim = MyClassifier(model, vocab)
accuracy = eval_classifier_acc(data_valid, victim)
print("Epoch %d: loss: %lf, accuracy %lf" % (i, loss, accuracy))
if mx_acc is None or mx_acc < accuracy:
mx_model = model.state_dict()
model.load_state_dict(mx_model)
return model
# Launch adversarial attacks and generate adversarial examples
def attack(classifier, dataset, attacker = OpenAttack.attackers.PWWSAttacker()):
attack_eval = OpenAttack.AttackEval(
attacker,
classifier,
)
correct_samples = [
inst for inst in dataset if classifier.get_pred( [inst["x"]] )[0] == inst["y"]
]
accuracy = len(correct_samples) / len(dataset)
adversarial_samples = {
"x": [],
"y": [],
"tokens": []
}
for result in tqdm.tqdm(attack_eval.ieval(correct_samples), total=len(correct_samples)):
if result["success"]:
adversarial_samples["x"].append(result["result"])
adversarial_samples["y"].append(result["data"]["y"])
adversarial_samples["tokens"].append(tokenizer.tokenize(result["result"], pos_tagging=False))
attack_success_rate = len(adversarial_samples["x"]) / len(correct_samples)
print("Accuracy: %lf%%\nAttack success rate: %lf%%" % (accuracy * 100, attack_success_rate * 100))
return datasets.Dataset.from_dict(adversarial_samples)
def main():
print("Loading data")
train, valid, test, vocab = prepare_data() # Load dataset
model = make_model(len(vocab)) # Design a victim model
print("Training")
trained_model = train_model(model, train, valid, vocab) # Train the victim model
print("Generating adversarial samples (this step will take dozens of minutes)")
victim = MyClassifier(trained_model, vocab) # Wrap the victim model
adversarial_samples = attack(victim, train) # Conduct adversarial attacks and generate adversarial examples
print("Adversarially training classifier")
print(train.features)
print(adversarial_samples.features)
new_dataset = {
"x": [],
"y": [],
"tokens": []
}
for it in train:
new_dataset["x"].append( it["x"] )
new_dataset["y"].append( it["y"] )
new_dataset["tokens"].append( it["tokens"] )
for it in adversarial_samples:
new_dataset["x"].append( it["x"] )
new_dataset["y"].append( it["y"] )
new_dataset["tokens"].append( it["tokens"] )
finetune_model = train_model(trained_model, datasets.Dataset.from_dict(new_dataset), valid, vocab) # Retrain the classifier with additional adversarial examples
print("Testing enhanced model (this step will take dozens of minutes)")
attack(victim, train) # Re-attack the victim model to measure the effect of adversarial training
|